Pengaruh Artificial Intelligence Tools terhadap Motivasi Belajar Siswa Ditinjau dari Teori Rogers

Authors

  • Ishmatun Naila Universitas Muhammadiyah Surabaya
  • Adi Atmoko Universitas Negeri Malang
  • Radeni Sukma Indra Dewi Universitas Negeri Malang
  • Wahju Kusumajanti Universitas Islam Negeri Sunan Ampel

DOI:

https://doi.org/10.30736/atl.v7i2.1774

Keywords:

Kecerdasan buatan, kurikulum sekolah dasar, motivasi belajar

Abstract

Abstrak: Penelitian kualitatif ini bertujuan untuk mengeksplorasi pengaruh alat bantu kecerdasan buatan/artificial Intelligence tools (AI) dalam pembelajaran terhadap motivasi siswa berdasarkan teori Rogers. Teori Rogers menekankan pentingnya pembelajaran yang berpusat pada siswa dan memfasilitasi minat dan antusiasme siswa. Namun, siswa dan guru dapat merasakan dampak sistem AI secara negatif, dan sebagian besar pengalaman negatif dengan sistem AI berasal dari ekspektasi siswa yang tidak realistis dan kesalahpahaman tentang sistem AI. Metode penelitian ini adalah kualitatif dengan jenis studi kasus. Subjek dalam penelitian ini adalah dua siswa kelas IV Sekolah Dasar. Pengumpulan data yang digunakan adalah triangulasi observasi, wawancara, dan dokumentasi. Analisis eksploratif dilakukan untuk menganalisis data yang telah didapat. Hasil penelitian menunjukkan bahwa AI tools dapat mempengaruhi motivasi belajar siswa menjadi lebih baik karena ketersediaan informasi dan kebutuhan yang dipersonalisasi bagi tiap siswa. 

Abstract: This qualitative research aims to explore the effect of artificial Intelligence tools (AI) in learning on student motivation based on Rogers' theory. Rogers' approach emphasises the importance of student-centered learning and facilitating student interest and enthusiasm. However, students and teachers can feel the impact of AI systems negatively, and most negative experiences with AI systems stem from students' unrealistic expectations and misunderstandings about AI systems. This research method is qualitative with a case study type. The subjects in this study were two fourth-grade elementary school students. The data collection used was a triangulation of observation, interview, and documentation. Explorative analysis was conducted to analyse the data that had been obtained. The results showed that AI tools can influence students' learning motivation to be better because of the availability of information and personalised needs for each student.

Downloads

Download data is not yet available.

References

Alam, A. (2021). Possibilities and Apprehensions in the Landscape of Artificial Intelligence in Education. 2021 International Conference on Computational Intelligence and Computing Applications (ICCICA), 1–8. https://doi.org/10.1109/ICCICA52458.2021.9697272

Aziz, A., & Masruri, A. (2022). Aktivitas Pembelajaran Bahasa Arab Anak Usia Dini dengan Pendekatan Psikologi Humanistik Carl R. Rogers. El-Athfal: Jurnal Kajian Ilmu Pendidikan Anak, 2(02), 64–78. https://doi.org/https://doi.org/10.56872/elathfal.v2i02.831

Banerjee, M., Chiew, D., Patel, K. T., Johns, I., Chappell, D., Linton, N., Cole, G. D., Francis, D. P., Szram, J., Ross, J., & Zaman, S. (2021). The Impact of Artificial Intelligence on Clinical Education: Perceptions of Postgraduate Trainee Doctors in London (UK) and Recommendations for Trainers. BMC Medical Education, 21(1), 429. https://doi.org/10.1186/s12909-021-02870-x

Bowman, R., Nadal, C., Morrissey, K., Thieme, A., & Doherty, G. (2023). Using Thematic Analysis in Healthcare HCI at CHI: A Scoping Review. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, 1–18. https://doi.org/10.1145/3544548.3581203

Chen, L., Chen, P., & Lin, Z. (2020). Artificial Intelligence in Education: A Review. IEEE Access, 8, 75264–75278. https://doi.org/10.1109/ACCESS.2020.2988510

Christou, P. (2023). Ηow to Use Artificial Intelligence (AI) as a Resource, Methodological and Analysis Tool in Qualitative Research? The Qualitative Report, 28(7). https://doi.org/10.46743/2160-3715/2023.6406

Chung, S., Zhan, Y., Noe, R. A., & Jiang, K. (2022). Is it Time to Update and Expand Training Motivation Theory? A meta-analytic Review of Training Motivation Research in The 21st Century. Journal of Applied Psychology, 107(7), 1150–1179. https://doi.org/10.1037/apl0000901

Gerlich, M. (2023). Perceptions and Acceptance of Artificial Intelligence: A Multi-Dimensional Study. In Social Sciences (Vol. 12, Issue 9). https://doi.org/10.3390/socsci12090502

Gopalan, V., Bakar, J. A. A., Zulkifli, A. N., Alwi, A., & Mat, R. C. (2017). A Review of the Motivation Theories in Learning. Aip Conference Proceedings, 1891(1), 020043. https://doi.org/10.1063/1.5005376

Hogg, H. D. J., Al-Zubaidy, M., Keane, P. A., Hughes, G., Beyer, F. R., & Maniatopoulos, G. (2023). Evaluating the Translation of Implementation Science to Clinical Artificial Intelligence: a Bibliometric Study of Qualitative Research. Frontiers in Health Services, 3. https://doi.org/10.3389/frhs.2023.1161822

Lai, P. C. (2017). The Literature Review of Technology Adoption Models and Theories for the Novelty Technology. JISTEM-Journal of Information Systems and Technology Management, 14(1), 21–38. https://ssrn.com/abstract=3005897

Larosa, F., Hoyas, S., García-Martínez, J., Conejero, J. A., Fuso Nerini, F., & Vinuesa, R. (2023). Halting generative AI Advancements May Slow Down Progress in Climate Research. Nature Climate Change, 13(6), 497–499. https://doi.org/10.1038/s41558-023-01686-5

Longo, L. (2020). Empowering Qualitative Research Methods in Education with Artificial Intelligence. WCQR 2019. Advances in Intelligent Systems and Computing, 1–21. https://doi.org/10.1007/978-3-030-31787-4_1

Luckin, R. (2017). Towards Artificial Intelligence-based Assessment Systems. Nature Human Behaviour, 1(3), 28. https://doi.org/10.1038/s41562-016-0028

Ouyang, F., & Jiao, P. (2021). Artificial Intelligence in Education: The Three Paradigms. Computers and Education: Artificial Intelligence, 2, 100020. https://doi.org/10.1016/j.caeai.2021.100020

Parno, P., Yuliati, L., Hermanto, F. M., & Ali, M. (2020). A Case Study on Comparison of High School Students’ Scientific Literacy Competencies Domain in Physics with Different Methods: Pbl-Stem Education, Pbl, and Conventional Learning. Jurnal Pendidikan IPA Indonesia, 9(2), 159–168. https://doi.org/10.15294/jpii.v9i2.23894

Perin, D., & Lauterbach, M. (2018). Assessing Text-Based Writing of Low-Skilled College Students. International Journal of Artificial Intelligence in Education, 28(1), 56–78. https://doi.org/10.1007/s40593-016-0122-z

Rogers, Carl R. (1961). On Becoming a Person: Houghton Mifflin Company.

Rogers, Carl R. (1977). On Personal Power: Inner Strength and Its Revolutionary Impact. In Group & Organization Studies. Delacorte Press. https://doi.org/10.1177/105960117700200418

Rogers, Carl Ransom. (1951). Client-centered Therapy: Its Current Practice, Implications and Theory. Constable.

Sutisna, R., Rusmana, N., & Supriatna, M. (2022). Analisis Karakteristik Kepribadian Mahasiswa dengan Teori Kepribadian Humanistik Carl R. Rogers: The Fully Functioning Person. Jurnal Bikotetik (Bimbingan Dan Konseling: Teori Dan Praktik), 6(2), 68–78. https://doi.org/10.26740/bikotetik.v6n2.p68-78

Thorne, B., & Sanders, P. (2013). Carl Rogers: key figures in counselling and psychotherapy series. SAGE Publications Inc.

Wahyudin, Y. (2009). Teori Belajar Humanistik Carl Ransom Rogers dan Implikasinya terhadap Metode Pembelajaran Pendidikan Agama Islam. UIN Sunan Kalijaga Yogyakarta.

Xu, Y., Liu, X., Cao, X., Huang, C., Liu, E., Qian, S., Liu, X., Wu, Y., Dong, F., Qiu, C.-W., Qiu, J., Hua, K., Su, W., Wu, J., Xu, H., Han, Y., Fu, C., Yin, Z., Liu, M., … Zhang, J. (2021). Artificial Intelligence: A Powerful Paradigm for Scientific Research. The Innovation, 2(4), 100179. https://doi.org/10.1016/j.xinn.2021.100179

PlumX Metrics

Published

2023-10-27

How to Cite

Naila, I., Atmoko, A., Dewi, R. S. I., & Kusumajanti, W. (2023). Pengaruh Artificial Intelligence Tools terhadap Motivasi Belajar Siswa Ditinjau dari Teori Rogers. At-Thullab : Jurnal Pendidikan Guru Madrasah Ibtidaiyah, 7(2), 150–159. https://doi.org/10.30736/atl.v7i2.1774